2017年选调生行测考试之数量关系经典题型解说(五)
[导读] 七.抽屉问题 三个例子: (1)3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。 (2)5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了2块
抽屉问题
三个例子:
(1)3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。
(2)5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了2块手帕。
(3)6只鸽子飞进5个鸽笼,那么一定有1个鸽笼至少飞进2只鸽子。
我们用列表法来证明例题(1):
放 法
抽 屉 ①种 ②种 ③种 ④种
第1个抽屉 3个 2个 1个 0个
第2个抽屉 0个 1个 2个 3个
从上表可以看出,将3个苹果放在2个抽屉里,共有4种不同的放法。
第①、②两种放法使得在第1个抽屉里,至少有2个苹果;第③、④两种放法使得在第2个抽屉里,至少有2个苹果。
即:可以肯定地说,3个苹果放到2个抽屉里,一定有1个抽屉里至少有2个苹果。
由上可以得出:
题 号 物 体 数 量 抽屉数 结 果
(1) 苹 果 3个 放入2个抽屉 有一个抽屉至少有2个苹果
(2) 手 帕 5块 分给4个人 有一人至少拿了2块手帕
(3) 鸽 子 6只 飞进5个笼子 有一个笼子至少飞进2只鸽
上面三个例子的共同特点是:物体个数比抽屉个数多一个,那么有一个抽屉至少有2个这样的物体。从而得出:
抽屉原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
再看下面的两个例子:
(4)把30个苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?
(5)把30个以上的苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?
解答:(4)存在这样的放法。即:每个抽屉中都放5个苹果;(5)不存在这样的放法。即:无论怎么放,都会找到一个抽屉,它里面至少有6个苹果。
从上述两例中我们还可以得到如下规律:
抽屉原理2:把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。
可以看出,“原理1”和“原理2”的区别是:“原理1”物体多,抽屉少,数量比较接近;“原理2”虽然也是物体多,抽屉少,但是数量相差较大,物体个数比抽屉个数的几倍还多几。
以上两个原理,就是我们解决抽屉问题的重要依据。抽屉问题可以简单归结为一句话:有多少个苹果,多少个抽屉,苹果和抽屉之间的关系。解此类问题的重点就是要找准“抽屉”,只有“抽屉”找准了,“苹果”才好放。
我们先从简单的问题入手:
(1)3只鸽子飞进了2个鸟巢,则总有1个鸟巢中至少有几只鸽子?(答案:2只)
(2)把3本书放进2个书架,则总有1个书架上至少放着几本书?(答案:2本)
(3)把3封信投进2个邮筒,则总有1个邮筒投进了不止几封信?(答案:1封)
(4)1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有几只鸽子?(答案:1000÷50=20,所以答案为20只)
(5)从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了几个苹果?(答案:17÷8=2……1,2+1=3,所以答案为3)
(6)从几个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果?(答案:25÷□=6……□,可见除数为4,余数为1,抽屉数为4,所以答案为4个)